Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inhal Toxicol ; : 1-16, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349733

RESUMEN

Sugarcane is the most widely cultivated crop in the world, with equatorial developing nations performing most of this agriculture. Burning sugarcane is a common practice to facilitate harvest, producing extremely high volumes of respirable particulate matter in the process. These emissions are known to have deleterious effects on agricultural workers and nearby communities, but the extent of this exposure and potential toxicity remain poorly characterized. As the epidemicof chronic kidney disease of an unknown etiology (CKDu) and its associated mortality continue to increase along with respiratory distress, there is an urgent need to investigate the causes, determine viable interventions to mitigate disease andimprove outcomes for groups experiencing disproportionate impact. The goal of this review is to establish the state of available literature, summarize what is known in terms of human health risk, and provide recommendations for what areas should be prioritized in research.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38234297

RESUMEN

Background. Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats. Methods. Sugarcane ash was administered for 13 weeks into the nares of rats (5 mg/day for 5d/week), and blood, urine and kidney tissues were collected at 13 weeks (at the end of ash administration) and in a separate group of rats at 24 weeks (11 weeks after stopping ash administration). Kidney histology was evaluated, and inflammation and fibrosis (collagen deposition) measured. Results. Sugarcane ash exposure led to the accumulation of silica in the kidneys, lungs, liver and spleen of rats. Mild proteinuria developed although renal function was largely maintained. However, biopsies showed focal glomeruli with segmental glomerulosclerosis, and tubulointerstitial inflammation and fibrosis that tended to worsen even after the ash administration had been stopped. Staining for the lysosomal marker, LAMP-1, showed decreased staining in ash administered rats consistent with lysosomal activation. Conclusion. Sugarcane ash containing silica nanoparticles can cause CKD in rats.

4.
Environ Pollut ; 332: 121951, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301454

RESUMEN

Multiple epidemics of chronic kidney disease of an unknown etiology (CKDu) have emerged in agricultural communities around the world. Many factors have been posited as potential contributors, but a primary cause has yet to be identified and the disease is considered likely multifactorial. Sugarcane workers are largely impacted by disease leading to the hypothesis that exposure to sugarcane ash produced during the burning and harvest of sugarcane could contribute to CKDu. Estimated exposure levels of particles under 10 µm (PM10) have been found to be exceptionally high during this process, exceeding 100 µg/m3 during sugarcane cutting and averaging ∼1800 µg/m3 during pre-harvest burns. Sugarcane stalks consist of ∼80% amorphous silica and generate nano-sized silica particles (∼200 nm) following burning. A human proximal convoluted tubule (PCT) cell line was subjected to treatments ranging in concentration from 0.025 µg/mL to 25 µg/mL of sugarcane ash, desilicated sugarcane ash, sugarcane ash-derived silica nanoparticles (SAD SiNPs) or manufactured pristine 200 nm silica nanoparticles. The combination of heat stress and sugarcane ash exposure on PCT cell responses was also assessed. Following 6-48 h of exposure, mitochondrial activity and viability were found to be significantly reduced when exposed to SAD SiNPs at concentrations 2.5 µg/mL or higher. Oxygen consumption rate (OCR) and pH changes suggested significant alteration to cellular metabolism across treatments as early as 6 h following exposure. SAD SiNPs were found to inhibit mitochondrial function, reduce ATP generation, increase reliance on glycolysis, and reduce glycolytic reserve. Metabolomic analysis revealed several cellular energetics pathways (e.g., fatty acid metabolism, glycolysis, and TCA cycle) are significantly altered across ash-based treatments. Heat stress did not influence these responses. Such changes indicate that exposure to sugarcane ash and its derivatives can promote mitochondrial dysfunction and disrupt metabolic activity of human PCT cells.


Asunto(s)
Nanopartículas , Saccharum , Humanos , Dióxido de Silicio/toxicidad , Dióxido de Silicio/análisis , Riñón/química , Nanopartículas/toxicidad , Línea Celular
5.
PLoS One ; 17(7): e0270817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789221

RESUMEN

Blood Brain Barrier (BBB) breakdown is a secondary form of brain injury which has yet to be fully elucidated mechanistically. Existing research suggests that breakdown of tight junction proteins between endothelial cells is a primary driver of increased BBB permeability following injury, and intercellular signaling between primary cells of the neurovascular unit: endothelial cells, astrocytes, and pericytes; contribute to tight junction restoration. To expound upon this body of research, we analyzed the effects of severely injured patient plasma on each of the cell types in monoculture and together in a triculture model for the transcriptional and translational expression of the tight junction proteins Claudins 3 and 5, (CLDN3, CLDN5) and Zona Occludens 1 (ZO-1). Conditioned media transfer studies were performed to illuminate the cell type responsible for differential tight junction expression. Our data show that incubation with 5% human ex vivo severely injured patient plasma is sufficient to produce a differential response in endothelial cell tight junction mRNA and protein expression. Endothelial cells in monoculture produced a significant increase of CLDN3 and CLDN5 mRNA expression, (3.98 and 3.51 fold increase vs. control respectively, p<0.01) and CLDN5 protein expression, (2.58 fold change vs. control, p<0.01), whereas in triculture, this increase was attenuated. Our triculture model and conditioned media experiments suggest that conditioned media from astrocytes and pericytes and a triculture of astrocytes, pericytes and endothelial cells are sufficient in attenuating the transcriptional increases of tight junction proteins CLDN3 and CLDN5 observed in endothelial monocultures following incubation with severely injured trauma plasma. This data suggests that inhibitory molecular signals from astrocytes and pericytes contributes to prolonged BBB breakdown following injury via tight junction transcriptional and translational downregulation of CLDN5.


Asunto(s)
Astrocitos , Pericitos , Astrocitos/metabolismo , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/metabolismo , Humanos , Pericitos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
6.
Am J Physiol Renal Physiol ; 323(1): F48-F58, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635324

RESUMEN

Silica nanoparticles (SiNPs) released during the burning of sugarcane have been postulated to have a role in chronic kidney disease of unknown etiology. We tested the hypothesis that pristine SiNPs of the size present in sugarcane might cause chronic kidney injury when administered through the lung in rats. We administered 200- or 300-nm amorphous SiNPs twice weekly (4 mg/dose), or vehicle by oropharyngeal aspiration for 13 wk to rats followed by euthanasia after an additional 13 wk (26 wk total). Tissues were evaluated for the presence of SiNPs and evidence of histological injury. Both sizes of SiNPs caused kidney damage, with early tubular injury and inflammation (at week 13) that continued to inflammation and chronic fibrosis at week 26 despite discontinuation of the SiNP administration. Both sizes of SiNPs caused local inflammation in the lung and kidney and were detected in the serum and urine at week 13, and the 200-nm particles were also localized to the kidney with no evidence of retention of the 300-nm particles. At week 26, there was some clearance of the 200-nm silica from the kidneys, and urinary levels of SiNPs were reduced but still significant in both 200- and 300 nm-exposed rats. In conclusion, inhaled SiNPs cause chronic kidney injury that progresses despite stopping the SiNP administration. These findings support the hypothesis that human exposure to amorphous silica nanoparticles found in burned sugarcane fields could have a participatory role in chronic kidney disease of unknown etiology.NEW & NOTEWORTHY Inhalation of silica nanoparticles (SiNPs) released during the burning of sugarcane has been postulated to have a role in chronic kidney disease of unknown etiology (CKDu). We administered 200- and 300-nm amorphous SiNPs to rats by aspiration and observed kidney damage with tubular injury and inflammation that persisted even after stopping the SiNP exposure. These findings support the hypothesis that human exposure to SiNPs found in sugarcane ash could have a participatory role CKDu.


Asunto(s)
Nanopartículas , Insuficiencia Renal Crónica , Animales , Inflamación/patología , Pulmón/patología , Nanopartículas/toxicidad , Ratas , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología , Dióxido de Silicio/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...